Marek Vasut <marex@denx.de>

October 15, 2014

Mare

Software engineer at DENX S.E. since 2011

Embedded and Real-Time Systems Services, Linux kernel and
driver development, U-Boot development, consulting, training.

Custodian at U-Boot bootloader

Versatile Linux kernel hacker

Secure and flexible boot with U-Boot bootloader

Ob;j

Tips to build a system, which. ..
...Is resistant against storage data corruption
... Is resistant against offline tampering

...is resistant against data extraction

Secure and flexible boot with U-Boot bootloader

 The boot process

That's easy ... not:
Power on or Reset
CPU starts executing from predefined address
Bootloader is started
Kernel is started
Root filesystem is used

Lots of things happen inbetween, that's where the problems are.

Secure and flexible boot with U-Boot bootloader

Power o

Hardware magic happens before CPU starts executing code:
All relevant components are put into reset
Reset brings components into defined state
CPU start executing code after released from reset

.but ...

There are multiple types of reset
Well defined post-reset state allows for proper analysis
Not well defined post-reset state is source of problems

Make sure your hardware is reliable in the first place!

Marek Vasut <marex@denx.de> Secure and flexible boot with U-Boot bootloader

Recurring problem!
Reset is not connected properly to all components
Often seen with MTD devices (SPI NOR) or SD/MMC cards

Example: CPU boots from SPI NOR
Software does a PP operation and feeds SPI NOR with data
Reset happens

Board does not boot — WHY?

Data corruption might happen — WHY?
Naive solution: Send RESET opcode in software (FAILS!)
Solution: CPU has reset output

Connect it to the boot media reset input

Marek Vasut <marex@denx.de> Secure and flexible boot with U-Boot bootloader

SD/eSD/MMC/eMMC:
Verify EOL behavior
— Must indicate bad blocks, not emit bad data
Baked firmware problems
NAND:
First EB often guaranteed to be OK by vendor
This might not extend to reprogramming of the first EB.
Read the datasheet carefully !
First page is 1/2/4 KiB big = U-Boot SPL
MLC NAND has even worse problems than SLC NAND

Secure and flexible boot with U-Boot bootloader

First code running on the CPU
Might be executing from within the CPU (BootROM)
Might be executing from external memory (NOR, FPGA, ...)

BootROM:

Facilitates loading from non-trivial media
(SPI' NOR, SD/MMC, RAW NAND, USB, Network, ...)

Might provide facilities for verified and encrypted boot
Often closed source
Usually cannot be updated with fixes (ROM)

Marek Vasut <marex@denx.de> Secure and flexible boot with U-Boot bootloader

U-Boot SPL:
First user-supplied code running
Smaller size than U-Boot
Function varies on per-device basis
Does basic hardware initialization

Loads payload from media, verifies it and executes it
— Payload can be either U-Boot, Linux, ...

RAW NAND specifics:
UBI doesn't fit into first 4KiB of NAND
U-Boot SPL does ECC, but doesn't update NAND
Multiple copies of U-Boot in NAND and update them
Better: Store U-Boot in NOR, kernel and FS in NAND

Marek Vasut <marex@denx.de> Secure and flexible boot with U-Boot bootloader

The size limits of SPL are almost non-existent

Full support for filesystems (ext234, reiserfs, vfat...)
UBI and UBIFS support for NAND

Supports verification and encryption

fitlmage support

Secure and flexible boot with U-Boot bootloader

Make sure your HW starts from a defined state
Always verify the next payload

Boot from reliable boot media (not RAW NAND)
Never place anything important into RAW NAND

Secure and flexible boot with U-Boot bootloader

Comm

zlmage

Prone to silent data corruption, which can go unnoticed
Contains only kernel image
In widespread use
ulmage (legacy)
Weak CRC32 checksum
Contains only kernel image
In widespread use

fitlmage

Configurable checksum algorithm

Can be signed

Contains arbitrary payloads (kernel, DTB, firmware...)
There is more !

Not used much :-(

Secure and flexible boot with U-Boot bootloader

The fitlm

Successor to ulmage

Descriptor of image contents based on DTS

Can contain multiple files (kernels, DTBs, firmwares. ..)
Can contain multiple configurations (combo logic)

New image features can be added as needed

Supports stronger csums (SHAL, SHA256. . .)
Protection against silent corruption

U-Boot can verify fitlmage signature against public key
Protection against tampering

Linux build system can not generate fitimage :-(

Yocto can not generate fitimage yet :-)

Marek Vasut <marex@denx.de> Secure and flexible boot with U-Boot bootloader

ulma

/dts-vi/;
/A1
description = "Linux kernel";
#address-cells = <1>;
images {
kernel@l {
description = "Linux kernel";
data = /incbin/("./arch/arm/boot/zImage");
arch = "arm";
os = "linux";
type = "kernel";
compression = "none";
load = <0x8000>;
entry = <0x8000>;
hashe1 {
algo = "shal";
};
};
};

configurations {
default = "conf@l";

conf@1 {
description = "Boot Linux kernel";
kernel = "kernel@l";
hashe1 {
algo = "sha256";
};
}

}
¥
$ mkimage -f fit-image.its fitImage

$ mkimage -A arm -0 linux -T kernel -C none -a 0x8000 -e 0x8000 -n "Linux kernel"
-d arch/arm/boot/zImage ulmage

Secure and flexible boot with U-Boot bootloader

ulmage

ulmage => load mmc 0:1 ${loadaddr} uImage
ulmage => bootm ${loadaddr}

fitImage => load mmc 0:1 ${loadaddr} fitImage
fitImage => bootm ${loadaddr}

ulmage is easier to construct
ulmage does not need fit-image.its file

ulmage boot command is the same as fitimage one

ulmage wins thus far. ..

Secure and flexible boot with U-Boot bootloader

ul

~ -
-

P i T T

description = "Flattened Device Tree blob";
data = /incbin/("./arch/arm/boot/dts/imx28-m28evk.dtb");

images {
fdte1 {
type = "flat_dt";
arch = "arm";
compression = "none";
hashe1 {
algo = "sha256";
}
}
configurations {
conf@l {
fdt = "fdte1";
};
};

Secure and flexible boot with U-Boot bootloader

ulmage

ulmage => load mmc 0:1 ${loadaddr} ulmage
ulmage => load mmc 0:1 ${fdtaddr} imx28-m28evk.dtb
ulmage => bootm ${loadaddr} - ${fdtaddr}

fitImage => load mmc 0:1 ${loadaddr} fitImage
fitImage => bootm ${loadaddr}

fitlmage allows an update of all boot components at the same time
fitlmage protects the DTB with a strong checksum (hash node)

fitlmage does not require change of the boot command here

Marek Vasut <marex@denx.de> Secure and flexible boot with U-Boot bootloader

/'

images {
kernel@l {};
fdte1 {};
f£dte2 {};
};
configurations {
confol {
kernel = "kernel@l";
fdt = "fdtei";
}
conf@2 {
kernel = "kernel@1l";
fdt = "fdte2";
};
};
};

=> bootm ${loadaddr}#conf@2
=> bootm ${loadaddr}:kernel@2

fitlmage can carry multiple predefined configurations
fitlmage allows for execution of config using the # (HASH)

fitlmage allows for direct execution of image using the : (COLON)

Secure and flexible boot with U-Boot bootloader

~ -
~ .

o+ o+ o+ 4

};

images {

};

firmware@l {

description = "My FPGA firmware";
data = /incbin/("./firmware.rbf");
type = "firmware";

arch = "arm";

compression = "none";

hashe1 {

algo = "sha256";
};

=> imxtract ${loadaddr} firmware@l ${fwaddr}

=> fpga load 0 ${fwaddr}

fitlmage can contain multiple arbitrary firmware blobs

fitlmage protects them with strong checksums

Secure and flexible boot with U-Boot bootloader

fitlma

=> iminfo ${loadaddr}

Checking Image at 10000000 ...
FIT image found
FIT description: Linux kernel and FDT blob for mcvevk
Created: 2014-09-22 15:37:52 UTC
Image O (kernel@l)
Description: Linux kernel
Created: 2014-09-22 15:37:52 UTC
Type: Kernel Image
Compression: uncompressed
Data Start: 0x100000d8

Data Size: 3363584 Bytes = 3.2 MiB
Architecture: ARM
0s: Linux

Load Address: 0x00008000

Entry Point: 0x00008000

Hash algo: crc32

Hash value: 5c7efdbs

Image 1 (fdt@1)

Description: Flattened Device Tree blob
Created: 2014-09-22 15:37:52 UTC
Type: Flat Device Tree

Default Configuration: ’conf@1’

Configuration 0 (conf@1)

Description: Boot Linux kernel with FDT blob
Kernel: kernel@l

FDT: fdte1
Checking hash(es) for FIT Image at 10000000 ...
Hash(es) for Image O (kernel@1): crc32+
Hash(es) for Image 1 (£dt@1): crc32+

Secure and flexible boot with U-Boot bootloader

fitlmage can protect all artifacts needed during boot

fitlmage can batch all files into one
=-Essential boot files can be updated at once

fitlmage supersedes ulmage with flexibility and extensibility

fitlmage is much less prone to silent corruption of it's payloads

Secure and flexible boot with U-Boot bootloader

Tampering protection for boot artifacts

Attach signature to fitlmage image or config node
SHA-1 + RSA-2048
SHA-256 + RSA-2048
SHA-256 + RSA-4096

U-Boot verifies the signature against a public key

Public key must be stored in read-only location

Secure and flexible boot with U-Boot bootloader

This is five step process:
Enable control FDT support in U-Boot and make use of it

Generate cryptographic material (using OpenSSL)
Generate the control FDT with public key in it
Assemble U-Boot that can verify the fitimage signature

Update U-Boot and test the setup. ..

Secure and flexible boot with U-Boot bootloader

CONFIG_RSA — support for RSA signatures
CONFIG_FIT_SIGNATURE — support for signed fitimage
CONFIG_OF_CONTROL — support for control DT in U-Boot

Secure and flexible boot with U-Boot bootloader

Our cryptomaterial goes into key_dir="/work/keys/"
The shared name of the key is key_name="my key"

Generate a private signing key (RSA2048):
$ openssl genrsa -F4 -out \
"${key dir}"/"${key name}".key 2048
Generate a public key:
$ openssl req -batch -new -x509 \
-key "${key_dir}"/"${key name}".key \
-out "${key.dir}"/"${key name}".crt

Secure and flexible boot with U-Boot bootloader

Example of control FDT (u-boot.dts):

/dts-v1/;
/A1
model = "Keys";
compatible = "denx,m28evk";
signature {
sigo {
required = "conf"; /* or "image" */

algo = "sha256,rsa2048";
key-name-hint = "my_key";
+
sigel {...};

};

};

The my_key in key-name-hint node must be ${key_name}
There can be multiple keys in the control DT
The u-boot.dtb must be read-only on the device

Secure and flexible boot with U-Boot bootloader

Example of signature node in fitlmage ITS (fit-image.its):

/L

configurations {
conf@1l {
hash@1l {...};
+ signature@l {
+ algo = "sha256,rsa2048";
+ key-name-hint = "my_key";
+ sign-images = "kernel,fdt";
+ };
};
3
};

The my_key in key-name-hint node must be ${key_name}

Secure and flexible boot with U-Boot bootloader

fitlmage: Assembling the seHp

Assemble control FDT for U-Boot with space for public key:
$ dtc -p 0x1000 u-boot.dts -0 dtb -o u-boot.dtb

Generate fitlmage with space for signature:
$ mkimage -D "-I dts -0 dtb -p 2000" \
-f fit-image.its fitImage
Sign fitimage and add public key into u-boot.dtb:
$ mkimage -D "-I dts -0 dtb -p 2000" -F \
-k "${key.dir}" -K u-boot.dtb -r fitImage
Signing subsequent fitlmage:
$ mkimage -D "-I dts -0 dtb -p 2000" \
-k "${key dir}" -f fit-image.its -r fitImage

Now rebuild U-Boot, update both U-Boot and u-boot.dtb
on the board and verify that U-Boot correctly starts.

Marek Vasut <marex@denx.de> Secure and flexible boot with U-Boot bootloader

Load the signed fitimage and use bootm start (or iminfo):
Verification passed (+ sign):
Verifying Hash Integrity ...
sha256,rsa2048:my_key+ OK
Verification failed (- sign):
Verifying Hash Integrity ...
sha256,rsa2048:my_key- Failed to verify required

signature ’key-my_key’

Secure and flexible boot with U-Boot bootloader

Par

Signed fitlmage looks a bit difficult to assemble
Difficult part is done only once

The u-boot.dtb must be in read-only storage

Secure and flexible boot with U-Boot bootloader

 Loading the kernel image

Use the 1load command for all but NAND
Use the ubi*/ubifs* commands for NAND

The fitlmage will assure that the image was not tampered with

Secure and flexible boot with U-Boot bootloader

Use Linux Integrity framework (IMA/EVM)
Use UBI/UBIFS for RAW flash-based media

Secure and flexible boot with U-Boot bootloader

CUBIJUBIFS

UBI is not full solution against silent corruption
UBI does not actively refresh the content on flash
Irrepairable corruption can still happen!

Implement a "scrubber” job:
$ find / -exec cat {} > /dev/null 2>&1

UBI does not support MLC NAND

Secure and flexible boot with U-Boot bootloader

Encryption of U-Boot (using BootROM)
Encryption of U-Boot environment

U-Boot has CONFIG_ENV_AES
Implement env_aes_cbc_get_key

Encryption of kernel image
U-Boot has CONFIG_CMD_AES
Use aes dec

Encryption of filesystem (use dm_crypt)

Secure and flexible boot with U-Boot bootloader

The

Thank you for your attention!

Contact: Marek Vasut <marex@denx.de>

Secure and flexible boot with U-Boot bootloader

